| •       | ~~~ | -   |   |
|---------|-----|-----|---|
| - 614   | 6E  | L 1 | 4 |
| 1 5 5 5 |     | - 4 |   |
|         |     |     | • |

| •   | <u> </u> | <del></del> |   |     | T. |   |
|-----|----------|-------------|---|-----|----|---|
| USN |          | •           | 1 | 1 1 |    | Ì |
|     |          | i i         |   |     |    |   |

## Fourth Semester B.E. Degree Examination, Dec.09/Jan.10 Transformers and Induction Machines

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

## PART - A

1 a. What are the difference between shell type and care type transformer.

(04 Marks)

- b. What is an auto transformer? Derive an expression for the saving of copper when an auto transformer is used and hence mention its applications. (10 Marks)
- c. Draw the vector diagram of an practical transformer for i) lagging pf load, ii) leading pf load iii) unity pf load. (06 Marks)
- 2 a. What are the losses in a transformer? How to reduce these losses? Derive condition for maximum efficiency. (08 Marks)
  - b. A 10 KVA, 2500/250V, 1 φ transformer gave the following test results:

O.C. test: 250 V, 0.8V, 50W

S.C. test: 60V, 3A, 45W

- i) Calculate the efficiency at 75% of F.L and 125% of F.L, at 0.8 pf lag.
- ii) Calculate the load KVA at which maximum efficiency occurs and also the value of maximum efficiency at 0.8 pf.
- ii) Compute the voltage resolution and secondary terminal voltage under rated full load at i) 0.8 pf lag and ii) 0.8 pf leading. (12 Marks)
- 3 a. With neat circuit diagram explain in detail Sumpner's test for determining the efficiency and voltage resolution of a transformer. Mention its advantages and disadvantages. (10 Marks)
  - b. Two 250 KVA transformers supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are same. The resistance drops are 1.5% and 0.9% and the reactance drops are 3.33% and 4% respectively. Calculate the KVA loading on each transformer and its power factor when the total load on the transformers is 500 KVA and at 0.707 pf lagging.
    (10 Marks)
- A Write short notes on:
  - a. Parallel operation of two  $1 \phi$  transformer with equal voltage ratio.
  - b. Scott connection
  - c. Open delta or V-V connection
  - d. Variable frequency transformer.

(20 Marks)

## PART - B

- a. With  $3 \phi$ , flux wave diagram and vector diagram explain how you obtain rotating magnetic field in a  $3 \phi$  I.M. and also explain the production of torque. (10 Marks)
- b. A 3 phase 4 pole, 50 Hz star connected induction motor running on full load develops a useful torque of 300 Nw-m. The rotor emf is completing 120 cycles per minute. If torque lost in friction is 50 Nw-m. calculate i) slip ii) net output power iii) rotor copper loss/ph iv) rotor efficiency v) rotor resistance /ph if rotor current is 60 A in running condition. (10 Marks)
- 6 a Explain how the performance of 3-ph induction motor is predetermined using the circle diagram by conducting the necessary test. (10 Marks)
  - b. Explain the necessity of a starter for a 3-ph induction motor. Name the different methods of starting a squirrel cage induction motor. Explain star delta starter of 3-ph squirrel cage I.M.

    (10 Marks)

On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Any revealing of identification, appeal to evaluator and/or equations written eg, 42+8=50, will be treated as malpractice. Any revealing of identification, appeal to evaluator and/or S

Important Note:

- 7 a. A 440V,  $3 \phi$ , 8 pole, 50Hz 40kW, star connected three phase I.M. has the following parameters  $R_1 = 0.1\Omega$ ,  $X_1 = j0.4\Omega$ ,  $R_2^1 = 0.15\Omega$ ,  $X_2^1 = j0.44\Omega$ . The stator core loss is 1250W while mechanical loss is 1000 watts. It draws a no load current of 20A at a pf of 0.09 lagging while running at a speed of 727.5 rpm calculate
  - i) Input line current and pf
  - ii) Torque developed
  - iii) Output power
  - iv) Efficiency

Use approximate equivalent circuit.

(10 Marks)

b. With a neat sketch explain the working of a double cage induction motor. Draw its equivalent circuit and torque—slip characteristic. (10 Marks)

- Write short notes on:
  - a. Double field revolving theory is a  $1 \phi$  I.M.
  - b. Cogging and crawling
  - c. Speed control of  $3 \phi$  squirrel cage I.M.
  - d.  $1 \phi$  Capacitor start motor.

(20 Marks)

